Алгоритм решения квадратных неравенств

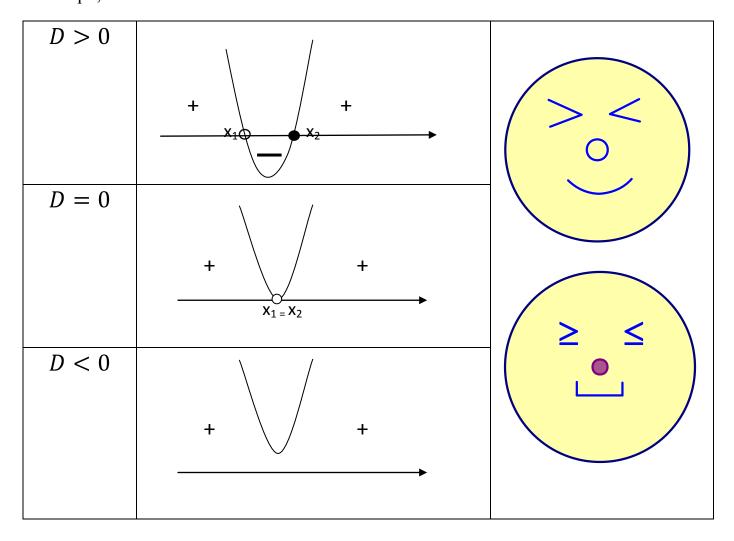
- 1) Привести неравенство к стандартному виду : $ax^2 + bx + c \lor 0$, a > 0
- 2) Решить квадратное уравнение (т.е. найти точки пересечения параболы $y = ax^2 + bx + c$ с осью Ox): $ax^2 + bx + c = 0$, $D = b^2 4ac$,

если D > 0, то
$$x_{1} \neq x_{2} = \frac{-b \pm \sqrt{D}}{2a}$$
 (две точки пересечения параболы с Ox),

если D = 0, то
$$x_1 = x_2 = \frac{-b \pm \sqrt{0}}{2a}$$
 (одна общая точка с 0x),

если D < 0, то нулей нет (парабола не имеет общих точек с осью Ox)

3) Рисуем схематично параболу $y = ax^2 + bx + c$. Ветви параболы направлены вверх, т.к. a > 0



4) Записываем в ответ промежуток с нужным знаком (+ или -), при этом учитываем знак неравенства (смайлики*)

*Рисуя смайлики, дети быстро строят логические цепочки: знак неравенства нестрогий => точка закрашенная => скобка квадратная; знак неравенства строгий => точка выколотая => скобка круглая.

Алгоритм решения неравенств методом интервалов

- 1) Привести неравенство к виду $\mathbf{f}(\mathbf{x}) \leq \geq \mathbf{0}$
- 2) Упростить f(x) и, если возможно, разложить на множители
- 3) Найти ОДЗ **f**(**x**)
- 4) Найти нули $\mathbf{f}(\mathbf{x})$, решив уравнение $\mathbf{f}(\mathbf{x}) = \mathbf{0}$
- 5) Изобразить на числовой прямой **ОДЗ** и нули $\mathbf{f}(\mathbf{x})$, при изображении нулей $\mathbf{f}(\mathbf{x})$ учесть знак неравенства (нестрогий закрашенные точки, строгий выколотые точки) $\leq \geq \bullet$ или $\ll \sim$ 0
- 6) В полученных промежутках расставить знаки f(x)
- 7) Заштриховать интервалы с нужными знаками
- 8) Записать заштрихованные промежутки в ответ
- 9) Для нестрогого неравенства проверить, все ли нули f(x) включены в ответ

Схема исследования функции								
<u>№</u> n\n	Свойства	Функция задана формулой	На графике					
1.	Область определения функции	Значения аргумента (х), при которых функция (у) определена, т.е. все операции выполнимы	абсциссы точек графика (проектируем график на ось Ох) (ищем крайнюю левую и крайнюю правую точки графика)					
2.	Множество значений функции	Соответствующие значения функции (у) для всех значений аргумента (х) из области определения функции	ординаты точек графика (проектируем график на ось Оу) (ищем крайнюю нижнюю и крайнюю верхнюю точки графика)					
3.	Четность (нечетность) функции	Функция называется четной (нечетной), если: 1. ее область определения симметрична относительно нуля; 2. $f(-x) = f(x)$ ($f(-x) = -f(x)$)	График четной (нечетной) функции симметричен относительно оси Оу (начала координат)					
4.	Нули функции	значения x при которых $y = 0$	Точки пересечения графика с осью Ох					
5.	Промежутки знакопостоянства	 Значения <i>x</i> при которых <i>y > 0;</i> Значения <i>x</i> при которых <i>y < 0.</i> 	 график выше оси Ох; график ниже оси Ох. 					
6.	Промежутки монотонности	 Значения <i>x</i> при которых функция (у) возрастает; Значения <i>x</i> при которых функция (у) убывает. 	1. オ 2. 凶					
<i>7</i> .	Наибольшее и\или наименьшее значения функции	Наибольшее и\или наименьшее число из множества значения функции (унаию; унаим)	у _{наиб} — соответствует крайней верхней точке графика; у _{наим} - соответствует крайней нижней точке графика					
8.	Ограниченность функции	Ограничена <i>сверху</i> (<i>снизу</i>), если есть <i>наибольшее</i> (<i>наименьшее</i>) значение						

Алгоритмы решения систем уравнений

1. Метод подстановки

- 2. В одном из уравнений вырази одну переменную через другую
- 3. Подставь полученное в шаге 1 выражение в другое уравнение
- 4. Реши полученное на втором шаге уравнение с одной переменной
- **5.** Подставь найденное на 3 шаге значение переменной в выражение, полученное на шаге 1, и найди соответствующее значение второй переменной
- 6. Запиши ответ в виде пары значений (х; у), которые были найдены на 3 и 4 шаге.

Пример:
$$\begin{cases} 2x - y = 5\\ x - 3y = -5 \end{cases}$$

1. Выразим переменную у из 1-го уравнения:

$$2x - y = 5$$
, $-y = 5 - 2x$, $y = 2x - 5$

- **2.** Подставим, полученное в шаге 1 значение переменной y, в другое (второе) уравнение: x 3y = -5, x (2x 5) = -5
- 3. Решим, полученное уравнение с одной переменной

$$x - 3(2x - 5) = -5$$
, $x - 6x + 15 = -5$, $-5x = -15 - 5$, $-5x = -20$, $x = -20$: (-5) , $x = 4$

- **4.** Подставим полученное в шаге 3 значение переменной x в выражение, полученное на шаге 1: y = 2.4 5 = 8 5 = 3
- **5.** *Omeem:* (4; 3)

2. Метод алгебраического сложения

- **1.** Домножь одно или оба уравнения на такое(ие) число(а), чтобы у одной из переменных появились противоположные коэффициенты.
- 2. Сложи полученные в шаге один уравнения.
- 3. Реши полученное в шаге два уравнение с одной переменной.
- **4.** Найди соответствующее значение второй переменной, подставив найденное в третьем шаге значение другой переменной.
- **5.** Запиши ответ в виде пары значений (x; y) , которые были найдены на третьем и четвертом шагах

Пример:
$$\begin{cases} 2x - y = 5 \\ x - 3y = -5 \end{cases}$$

1. Умножим обе части первого уравнения на (-3), чтобы при переменной у появились противоположные коэффициенты. (могли умножить на (-2) обе части второго уравнения, тогда бы при переменной х появились

противоположные коэффициенты)
$$\begin{cases} -6x + 3y = -15 \\ x - 3y = -5 \end{cases}$$

2. Сложим уравнения (левую часть с левой, а правую с правой)

$$(-6x + x) + (3y - 3y) = -15 + (-5);$$

- **3.** Решим полученное уравнение: -5x = -20; x = 4
- **4.** Найдем соответствующее значение переменной y, для этого подставим полученное значение переменной x в любое уравнение. Выберем уравнение (1):

$$2x - y = 5$$
; $2 \cdot 4 - y = 5$; $-y = 5 - 8$; $-y = -3$; $y = 3$

5. Omsem: (4; 3)

Способы разложения многочлена на множители

- **1.** Вынесение общего множителя за скобки: $2ab^2 4a^2c = 2a(b^2 ac)$
- 2. Формулы сокрашенного умножения:

Формулы	Примеры
$1.a^2 - b^2 = (a - b)(a + b)$	$16 - x^4 = 4^2 - (x^2)^2 = (4 - x^2)(4 + x^2)$
	$= (2-x)(2+x)(4+x^2);$
	$(2n-5)(2n+5) = (2n)^2 - 5^2 = 4n^2 - 25$
$2.(a \pm b)^2 = a^2 \pm 2ab + b^2$	$(4 + 3z)^2 = 4^2 + 2 \cdot 4 \cdot 3z + (3z)^2 = 16 + 24z + 9z^2$
	$25 - 10y + y^2 = 5^2 - 2 \cdot 5 \cdot y + y^2 = (5 - y)^2$
$3.a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$	$27 - a^6 = 3^3 - (a^2)^3 = (3 - a^2)(9 - 3a^2 + a^4)$
	$(4+x)(16-4x+x^2) = 4^3 + x^3 = 64 + x^3$
$4.(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$	$(2-n)^3 = 8 - 12n + 6n^2 - n^3$
	$343 + 21x^{10} + 147x^5 + x^{15} = (7 + x^5)^3$

3. Способ группировки:

Чтобы разложить многочлен на множители способом группировки, надо:

сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель

$$bc + 3ac - 2ab - 6a^2 = (bc + 3ac) + (-2ab - 6a^2) =$$

вынести в каждой группе общий множитель в виде одночлена за скобки

$$(bc + 3ac) + (-2ab - 6a^2) = c(b + 3a) - 2a(b + 3a) =$$

вынести в каждой группе общий множитель в виде многочлена за скобки

$$c(b+3a) - 2a(b+3a) = (b+3a)(c-2a)$$

Алгоритм сложения и вычитания алгебраических дробей с разными знаменателями

- 1. Привести дроби к общему знаменателю, для этого:
- а) разложить все знаменатели на множители;
- б) из первого знаменателя выписать произведение его множителей, из остальных знаменателей приписать к этому произведению недостающиее множители, полученное произведение будет общим (новым) знаменателем;
- в) найти дополнительные множители для каждой из дробей;
- г) найти для каждой дроби новый числитель;
- д) записать каждую дробь с новым числителем и знаменателем.
- 2. Алгебраические дроби с одинаковыми знаменателями складывают и вычитают так же, как и обыкновенные дроби с одинаковыми знаменателями $\frac{a}{d} + \frac{b}{d} - \frac{c}{d} = \frac{a+b-c}{d}$

$$\frac{a}{d} + \frac{b}{d} - \frac{c}{d} = \frac{a+b-c}{d}$$

Примеры:

1.
$$\frac{2x-7y}{4} + \frac{3x-y}{6} = \frac{2x-7y}{2\cdot 2} + \frac{3x-y}{2\cdot 3} = \frac{3(2x-7y)+2(3x-y)}{2\cdot 2\cdot 3} = \cdots$$

2.
$$\frac{1+x}{x^2-xy} - \frac{1-y}{y^2-xy} = \frac{1+x}{x\cdot(x-y)} - \frac{1-y}{-y(x-y)} = \frac{y\cdot(1+x)+x\cdot(1-y)}{xy\cdot(x-y)} = \cdots$$